Why You Should Use Plume Models for Chemical Emergency Response

Why You Should Use Plume Models for Chemical Emergency Response

During unplanned chemical releases, there are bound to be more questions than answers. Plume models are the best way to answer these questions and more.

A plant-wide power outage at Pasadena Refining Systems in Texas one hot July day forced the plant to flare off some product, including sulfur dioxide. As the toxic black smoke drifted into the nearby community, safety officials partially shut down the Houston Ship Channel and issued a precautionary shelter-in-place alert to protect area residents.

Fortunately, no injuries were reported as a result of this sulfur dioxide release, but the incident serves as a reminder that preparedness includes knowing events beyond your control can and will happen. No amount of operational excellence, operator training or reliability and maintenance could have stopped this event—that’s why it’s so critical to be prepared for any emergency.


During unplanned chemical releases, there are bound to be more questions than answers. You’ll ask yourself things like, what’s happening on the ground? What gas is being released? How much was released and where is it going? Will my employees, responders and neighbors be exposed to dangerous levels of gas, and when will that happen? Where should I focus my emergency team to ensure an efficient response? Is it safe to shelter-in-place or should I order an evacuation? When can I say it’s safe?

Plume models are the best way to answer these questions and more.

What is Plume Modeling?

Plume models, also known as atmospheric plume dispersion models, are software-based algorithms that calculate the path and concentrations of airborne contaminants after a release.
Some plume modeling software incorporates real-time data from gas and weather sensors into advanced algorithms to tell you what contaminant is being released, where it’s coming from and where the plume or cloud is going. With this information, you can accurately identify the hazard zone and areas that will be affected within a two-hour window, allowing you to make quick safety decisions for plant personnel. You can immediately notify first responders and arm them with the information they need to set up roadblocks, evacuation centers and command posts, as well as decontamination, triage and staging areas.


This article originally appeared in the November/December 2020 issue of Occupational Health & Safety.

Download Center

HTML - No Current Item Deck
  • EHS Management Software Buyer's Guide

    Download this buyer's guide to make more informed decisions as you're looking for an EHS management software system for your organization.

  • Steps to Conduct a JSA

    We've put together a comprehensive step-by-step guide to help you perform a job safety analysis (JSA), which includes a pre-built, JSA checklist and template, steps of a JSA, list of potential job hazards, and an overview of hazard control hierarchy.

  • Levels of a Risk Matrix

    Risk matrices come in many different shapes and sizes. Understanding the components of a risk matrix will allow you and your organization to manage risk effectively.

  • Free Safety Management Software Demo

    IndustrySafe Safety Management Software helps organizations to improve safety by providing a comprehensive toolset of software modules to help businesses identify trouble spots; reduce claims, lost days, OSHA fines; and more.

  • Industry Safe
Bulwark FR Quiz

OH&S Digital Edition

  • OHS Magazine Digital Edition - March 2021

    March 2021

    Featuring:

    • EMPLOYEE TESTING
      The Impact of COVID-19 on Drug Testing
    • PROTECTIVE APPAREL
      Preparing for Unpredictable Spring Weather
    • FALL PROTECTION
      Building a Comprehensive Floor Safety Strategy
    • GAS DETECTION
      Gas Hazards and the COVID-19 Vaccine
    View This Issue

2020最新国产自产在线不卡_国产精品一区第二页_国产欧美一区二区三区